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1. Introduction
In this study Newton’s Law of Gravity (NLOG) will be 
shown to be adequately accurate in certain situations, 
but not in others. Accordingly, a general law of 
gravity (GLOG) will be proposed which eliminates 
these errors. It will be further shown that the proposed 
theory leads to a determination of the center of gravity 
which usually differs from the center of mass. GLOG 
will then be used to explain the strange movements 
of stars in galaxies, so that there is probably no dark 
matter in the universe. 

2. Newton’s Law of Gravity (NLOG)
Assume that masses m1 and m2 are stationary with 
respect to a given inertial frame of reference, IFR0, 
and r is the instantaneous distance between them. 
Then from Newton’s Law of Gravity (NLOG) the 
mutually attractive gravitational force f exerted by 
each mass on the other is as follows:
2.1 Newton’s Law of Gravity (NLOG)

 (2.1)  f  = G m1 m2  / r 2                 
In this equation G  is called the universal gravitational 

constant. While it has been estimated in the lab that G 
≈ 6.672x10 -11 m3/kgs2, there are theoretical problems 
associated with the experiments that find G which 
will be covered in this work. 

3. Problems with NLOG
One of the reasons Newton set forth his equation was 
to evaluate the attractive forces exerted by orbiting 
bodies on one another. In these cases the distances 
between the bodies are large. As a general rule, NLOG 
is an approximation which works reasonably well in 
these situations, as long as the time spans under study 
are not too great. This is the case, for example, in 
Kepler’s law. However, especially when the distances 
between the masses are short or when the time spans 
under study are very large, then there are situations 
when various factors must be taken into account, 
some of which are as follows:
(a) Is the center of gravity (cg) equal to the center of 
mass (cm)? 
(b) If not, then how do you find it? 
(c) What happens when at least one of the masses is 
not stationary?

SRYAHWA
PUBLICATIONS

Open Access Journal of Physics
ISSN: 2637-5826 | Volume 6, Issue 1, 2024

https://doi.org/10.22259/2637-5826.0601001

ReseARch  ARtIcLe

A General theory of Gravity with Applications to Determining the 
Mutually Attractive Forces between Moving Masses, the center of 
Gravity, and the Resolution of the Dark Matter Problem
Donald c. Aucamp, scD

Professor (Emeritus), SIUE, Edwardsville, Illinois, USA.
Received: 05 March 2024   Accepted: 20 March 2024   Published: 04 April 2024
Corresponding Author: Donald C. Aucamp, Professor (Emeritus), SIUE, Edwardsville, Illinois, USA.

Abstract
While Newton’s Law of Gravity is often a useful starting point in the study of gravity, it is shown to be in 
error when it is employed to find forces when masses are close to each other or when the long-term effects 
concerning orbiting bodies are under study. In its stead an alternate law is proposed which avoids these errors. 
This law is then used to explain the strange behavior of stars in dark matter studies. The proposed law also 
provides an equation for calculating the center of gravity of a given mass which can differ from the center of 
mass. A simple example is used to prove this point. 

citation: Donald C. Aucamp. A General Theory of Gravity with Applications to Determining the Mutually Attractive Forces between Moving 
Masses, the Center of Gravity, and the Resolution of the Dark Matter Problem. Open Access Journal of Physics. 2024;6(1): 01-06.

©The Author(s) 2024. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited.



A General Theory of Gravity with Applications to Determining the Mutually Attractive Forces between Moving Masses, the Center 
of Gravity, and the Resolution of the Dark Matter Problem

                                              Open Access Journal of Physics V6. I1. 20242

(d) How do you deal with arbitrary mass shapes?
The General Law of Gravity (GLOG) proposed in this 
work will handle these difficult issues.

4. A Barbell thought experiment 
Whenever the center of gravity (cg) happens to be 
calculated, it is generally assumed to be at the center 
of mass (cm). Sometimes this assumption is based on 
torque analysis when the gravitational acceleration 
is constant. In the simple barbell thought experiment 
given here it will be shown that it is possible that the 
cg is not at the cm. 
Consider a given inertial frame of reference, IFR0, 
and assume that two masses, m1 and m2, are stationary 
within IFR0, where m1=m2=m/2. In order to avoid 
problems which will become evident in the theory 
developed later in this work, assume that these masses 
are infinitesimally small. Let the two dimensional (x,y) 
positions of m1 and m2 be as follows: (x1=c, y1=0) and 
(x2=-c, y2=0). Thus, the masses are positioned in a 
barbell arrangement on equal sides of the x axis at 
y=0 in the xy plane. Next, assume an observer is on 
the y axis in the xy plane at rOBS=(0,Y), where Y>0.  
As m 1 + m2 will be viewed as a single mass of total 
value m, where m=m1+m2, assume in this thought 
experiment that these two masses are attached by a 
weightless rod to form a barbell. In this example the 
cm of the barbell is at rcm=(0,0).
It is argued in this work that NLOG is a valid law when 
the two masses are stationary and differentially small 
in size, which applies in this case. Thus, the total force 
f exerted by the barbell on an arbitrarily differentially 
small mass, MOBS, situated at the observation point, 
rOBS=(0,Y), has a net value in the –μy direction, where 
μy is a unit vector on the y axis. Since it is assumed that 
gravitational forces are additive, then f  is the sum of 
the individual forces due to m1 and m2 on the observer 
mass MOBS as viewed at (0,Y). Thus, f  is found as 
follows:  

(4.1)  f  - [Gm1 MOBS cos(θ1)/D1 
2 + Gm2 MOBS cos(θ2)/D2 

2] μy

In the above, Di is the distance from mi to the 
observation point, as follows:

(4.2)  D1 
2 = D2 

2 = c2 + Y2

Since D1=D2, define D from (4.2) as follows: 
(4.3)  D 2 = Di

 2 = c 2+ Y 2

It is noted that the minus sign appears in (4.1) because 
f  is an attractive force. Since the force components 

cancel in the direction orthogonal to μy , the cos(θi)  
terms in (4.1) reflect the fraction of the force in the -μy 
direction, and they are given as follows:
 (4.4)  cos(θ1) = cos(θ2) = Y / D

Accordingly, from these comments (4.1) reduces to 
the following
 (4.5)  f  = - [ G m MOBS Y / D3]  μy

Now consider what happens if the total barbell mass of 
m is instead located as a fixed point mass at the center 
of gravity, rcg. The objective here is to determine rcg 
so that the force exerted on MOBS by the point mass m 
is the same as the value of f as given by (4.5). In this 
particular thought experiment the barbell weights fall 
symmetrically about the y axis, so that it the cg falls on 
the y axis. In particular, suppose it falls on the y axis at 
a distance L in the - μy direction from the observation 
point at rOBS=(0,Y). Thus, if y0 is the y component of 
rcg, then y0=Y-L and the following obtains:
 (4.6)  rcg = (0, y0) = (0, Y - L)

If, for example, the cg happened to be at the cm, then 
y0=0 and from (4.6) L=Y. However, it turns out this 
is not the case. L is found by equating the actual f  at 
rOBS=(0,Y) to  the value that would be achieved if the 
entire mass of m  were a single point mass located at 
rcg=(0,Y-L). Thus, from (4.5) and the assumption that 
the force between two point masses is proportional 
to the product of the masses and1/D 2, the following 
obtains:
   (4.7)  f = - [GmMOBS Y/D3] μy = - [GmMOBS/L

2] μy 
From (4.7) it is seen that Y/D3 =1/L2, so that: 
                        (4.8) L2 = D3/Y 
Since D>Y , it is seen from (4.8) that L2<L3/Y, so that 
L/Y>1 and therefore: 
                        (4.9) L > Y

Thus, from (4.9) it is concluded that the cg, which is 
at rcg=(0,y0)=(0,Y-L), satisfies the following:

             (4.10)  y0 =Y – L < 0

Therefore, the cg is not at the cm in this example. 

Based on this relatively simple thought experiment 
the following conclusions are drawn:

4.1 experiment conclusions

(a) The center of mass is not necessarily at the center 
of gravity. 
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(b) The cg will generally depend on the position of 
the observer.
(c) The cg is not necessarily just a single point.

5. The Differential Law of Gravity  (DLOG) 
In this section the differential law of gravity (DLOG) 
will be proposed. It will be the fundamental law 
upon which the General Law of Gravity (GLOG) in 
the next section will be based. In contrast to NLOG, 
assume that both m1 and m2 are differentially small in 
size, so that the notation used for these masses will be 
dm1 and dm2. Also assume that either or both of these 
masses may be non-stationary. It is therefore seen that 
this model is quite general for two masses, except for 
the differential mass sizes. Next, suppose the user has 
a given fixed inertial frame of reference, say IFR0. For 
this given IFR0, assume that IFR(t) is the instantaneous 
inertial frame of reference of dm1 at time t, so that dm1 
is temporarily stationary in IFR(t) at this instant. A 
key assumption in DLOG is that a gravitational ray is 
continuously sent out from dm1 (and also from dm2) 
which travels at the speed of light, c, with respect to 
the instantaneous inertial frame of reference, IFR(t), 
of m1. Actually, what is sent out is a gravitational field 
that is a sphere, but calling it a ray better fixes attention 
on the upcoming analysis. This situation is similar to 
a moving fighter plane that fires a missile at time t 
which travels at a given speed relative to the inertial 
frame of reference of the plane at the instant of firing. 
The missile subsequently hits the target at some later 
time, t+Δt. It is noted that the assumption concerning 
the movement of gravitational forces is in line with 
experimental results concerning the gravitational 
waves that have been detected following cataclysmic 
events in outer space.
As measured in IFR(t), assume that R(t)=R(t)u(t) is 
the distance vector the ray travels until it hits dm2 
at some later time, t+Δt, where dm2 may have been 
moving during the time Δt , and where u(t) is a unit 
vector in the direction of R(t). It is noted that R(t) 
may be different from the initial line-of-sight vector, 
R0(t)=R0(t)u0(t). Assume at the moment of impact 
that the velocity of m2 is V2 =V2u2 , where u2 is a unit 
vector, all as measured in IFR(t). Also, assume that m2 
is moving at an angle of φ with respect to the arriving 
ray, so that cos(φ) = u(t) .u2(t). Thus, the relevant m2 
speed, VREL, with respect to the direction of the ray is 
given by VREL=V 2 cos(φ), all as measured in IFR(t). 
Now define Z as follows:

(5.1)  Z = V2 cos(φ) / c = VREL / c 

From (5.1) it is seen that Z=1 when dm2 is moving 
in the direction of u(t) at a velocity of c. Conversely, 
Z= -1 when dm2 is moving at a velocity of c in the 
direction of -u(t). Thus,-1≤Z≤1. 

A critical assumption will now be made concerning the 
gravitational force the ray exerts on dm2. It is argued 
that this force linearly decreases when the V2 velocity 
lines up with the ray velocity, and v.v. Moreover, if it 
were to happen that that VREL/c=1, it is argued there 
would be no force at all. Conversely, if VREL/c= -1, it 
is argued the exerted force would be doubled from its 
value when both masses happen to be stationary. With 
this linearity assumption these arguments reduce to 
the following law for the differential force, df , exerted 
by the ray on dm2:
 (5.2)  df =  - df0  (1 – Z) = - df0 (1 - Z) u(t)

As it is argued that Z in real world applications 
is generally extremely small, so that the linearity 
assumption of Z in (5.2) is very local. In this equation 
df0 is based on the spirit of Newton’s Law as follows:
            (5.3)  df0 = G dm1 dm2 / R 2(t)

It is noted that df0>0 in (5.3), so that df  in (5.2) is in 
the -u(t)  direction when 1-Z≥0, which is presumably 
always the case. As the gravitational force is attractive, 
the result concerning the negative sign in (5.2) is 
intuitively obvious. It is also seen from (5.3) that df0 
is identical to NLOG when the masses are differential 
except that R(t) is not the line-of-sight value.

Accordingly, from (5.2) and (5.3) the differential law 
of gravity (DLOG) is given as follows: 
Differential Law of Gravity (Dlog)
(5.4)  df = – df0 (1 – Z) = – (1 – Z)  u(t)  G dm1 dm2 / R 2(t)  

It is seen from (5.4) that there are differences between 
DLOG and NLOG, as follows: 

(a) In DLOG the gravitational force travels at c, 
whereas NLOG does not consider such a movement. 

(b) R(t) is not necessarily the original line of sight 
vector. 

(c) The exerted force takes into consideration the 
relative motion  of  m2 with respect to the ray movement 
at the time of arrival.

(d) All calculations are based on the instantaneous 
inertial frame of reference, IFR(t) at the emission 
time t. 
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(e)  If either dm1 or dm2 or both are nonstationary in 
IFR0, then probably Z≠0 , but Z is very small. 
(f) If Z=0, DLOG becomes NLOG except for the 
dm’s.                    
It is noted that the results of the thought experiment in 
Section 4 are in agreement with DLOG. 

6. the General Law of Gravity  (GLOG)
Concerning the problem of finding the gravitational 
attractive force f exerted by m1 and m2 on each other,  it 
is assumed that this force may be found by integrating 
df  as given by (5.4) over all dm1 in m1 and all dm2  in 
m2. Thus: 
the General Law of Gravity (Glog)
(6.1)  f = ∫∫ df =  – ∫∫  (1 – Z)  u(t) G dm1 dm2 / R 2(t) 
In this equation R(t) is the distance the ray travels 
as it moves from dm1 to dm2. Thus, more strictly, 
R(t)=R(t,dm1,dm2). In the interpretation of (6.1) each 
differentially small element of mass dm1 exerts a 
differentially small mutually attractive force df on each 
small element of mass dm2, and v.v. Unfortunately, 
performing the above integration may not be an easy 
matter, even in the case when both masses are constant 
density spheres. 

7. Finding the center of Gravity (cg)
Part of the problem of determining the position, rcg, 
of the center of gravity of a given stationary mass, m, 
involves the definition what the cg means. It is assumed 
here that m may have an arbitrary shape and that its 
mass density may not be constant. It is argued that rcg 
should depend on the position, rOBS, of the observer. In 
this regard, assume an arbitrary stationary differential 
mass of dMOBS  is at the observer, which is at rOBS, and 
that m exerts a force, fOBS, on dMOBS. As both m and 
dMOBS are assumed to be stationary in a given IFR, 
then Z=0 in DLOG and GLOG. Also, from DLOG 
it is clear that the magnitude of fOBS is proportional 
to both dMOBS and m. Thus, fOBS can be written in the 
following form:

(7.1)  fOBS = [G m dMOBS / L
2] u = α u

In (7.1) u is a unit vector which points in the direction 
from rOBS to some point in the interior of mass m, so 
that α = [G m dMOBS / L

2] > 0. Also, the distance L 
and both α and u are assumed to be known from an 
application of GLOG. Thus, L in (7.1) is known and 
is determined from the following:

(7.2)  L2 =  [G m dMOBS ] / α 

Now, instead of the actual mass m being distributed 
in some arbitrary way, assume it is totally situated 
at a given point, rcg, which will be called the center 
of gravity. Then, by definition of the cg, the force fcg 
exerted by this point mass m on dMOBS at rOBS satisfies 
the following:

 (7.3)  fcg = fOBS

As both m and dMOBS are point masses, then fcg=[G m 
dMOBS/L2] u, so from the above equations the force fcg 
exerted by a point mass m on a point mass dMOBS is 
determined as follows:

(7.4)  fcg = [G m dMOBS / L
2] u = α u

Since the cg is at a distance L along the vector u from 
the observation point, the following obtains:

   (7.5)  rcg = rOBS + L u 
As the values in (7.5) are known, then rcg is determined. 
It is noted that the rcg vector as given by (7.5) is the 
solution of the thought experiment given in Section 
4. Also, it is clear from the above analysis and the 
thought experiment that rcg is not necessarily at the 
center of mass, or even that the line drawn from 
the observation point through the center of mass 
necessarily passes through the center of gravity. 

8. Application:  When m1 is the earth
One of the major applications of gravitational theory 
occurs when m1 is the earth and the size of m2  is small 
compared the earth. It is assumed in the calculations 
that both m1 and m 2 are stationary, so that Z=0  in 
DLOG and GLOG. Based on the huge size of the 
earth’s radius and the diminutive size of m2, it is 
assumed that the cg of any combination of dm2 and 
the earth is virtually a constant for all dm2  in m2. Also, 
since m1 is essentially infinitely greater than m2, and 
since the cg of the total mass, m1+m2, is hugely far 
away from all dm2, the gravitational force exerted by 
m1 on m2 is virtually constant for all dm2 in m2. Thus, 
it can be concluded that the force, df, exerted by m1 on 
any dm2 satisfies the following equation:

 (8.1)  df = (constant) (dm2) (u)
In (8.1) u is a constant unit vector for all dm2  in m2. 
Thus, on determining f  by integrating over all dm2  in 
(6.1) , the result is as follows: 

(8.2)  f = (constant) (m2)  (u) = m2 g
In (8.2) g is a vector which varies slightly with the 
position and elevation of m2 on the earth’s surface. It 
is noted that g, which is termed the acceleration due 
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to gravity, almost precisely points to the center of the 
earth, and that (8.2) agrees with actual experimental 
tests. The standard value for the magnitude of g is 
9.80665 m/s2. It is concluded that the use of (8.2) is a 
good formula for determining the gravitational force 
exerted by the earth on any mass m2 .
Though u very closely points to the center of the earth, 
the cg is not actually at this center because L as given 
in the prior analyses is not necessarily the radius of 
the earth. This would be the case even if the earth 
were a perfect sphere with a constant mass density. 

9. situations When GLOG->NLOG
From (5.7) the two requirements for GLOG to be 
equal to NLOG are that Z=0 (i.e., both masses m1 
and m2 are stationary) and they must be miniscule. 
However, in the case when the masses are orbiting 
bodies, it is argued the two bodies may be considered 
to be single points even though the mass sizes may 
be huge. This is because all radii vectors drawn from 
any dm1 in m1 to any dm2 in m2 are virtually identical.  
From this result it is seen that Newton was basically 
correct in his NLOG formula, except that
Z≠0. Also, it is argued that the Z effect in GLOG of 
a ray when it hits m2 is generally very small. Thus, 
NLOG can be used for orbiting bodies, so long as the 
time span under study is not too large. 
As will be discussed in the next section, the forces 
that orbiting stars in a galaxy exert on each other do 
not have Z=0, so that over long time spans the Z effect 
matters. 

10. Application of GLOG to the Dark 
Matter Problem
A key NLOG error in evaluating the mutually 
attractive force that a gravitational field exerts from 
one moving celestial body with mass m1 on another 
moving body with mass m2 is that the theory neglects 
the Z effect in GLOG.  Also, the actual distance 
vector of the ray is not the line-of-sight vector. Even 
though Z is probably very small, it is argued that it 
may significantly change the motion and position of a 
mass if the time span under study is huge. 
This situation is studied in Aucamp[1], where the 
gravitational model assumed has a quadratic Z  function 
in VREL/c with undetermined coefficients, rather than 
the linear model used here in GLOG. Also, the model 
does not use differential masses as in DLOG. Though 
the force exerted by one mass on another is therefore a 
little different from that of GLOG, nevertheless there 

is enough similarity between the two models to argue 
that the strange star motions explained in that paper 
can likewise be explained by GLOG. As the analysis is 
quite extensive, it will be omitted here. However, the 
conclusion remains the same, in that GLOG explains 
why there probably is no dark matter in the universe

11. Application of GLOG to constant Density 
spheres
The two problems which need to be solved concerning 
constant density spheres are: 
a) Problem #1:  The find the cg of a single sphere 
when the  observer is somewhere outside it.
b) Problem #2:  Find the mutually attractive force 
between m1 and m2, when both m1 and m2 are constant 
density spheres, but not necessarily identical ones. 
The solution of either of these problems using GLOG 
is easier said than done. The mathematics of finding 
f by solving (6.1) through integral analysis can be 
complicated, at least in the case when the distances 
involved are not great. The solution of both of these 
problems is now under current study.
It is noted that two constant density small spheres 
are often used in experiments to determine G. These 
“Cavendish” tests measure the mutually attractive 
force exerted by each sphere on the other, where the 
spheres are not necessarily identical. Unfortunately, 
as NLOG is used for the force model and not GLOG, 
it is concluded there may be an error in the calculation 
of G.  

12. Final conclusions
Newton’s Law of Gravity (NLOG) asserts that the 
mutually attractive force between masses m1 and m2  
separated by a distance r  is given by f =Gm1 m2 /r 2. It 
is argued that this model is valid if two conditions, C1 
and C2, are met, which are as follows:
(C1)  Both m1 and m2 are differentially small point 
masses.
(C2)  Both m1 and m2 are stationary.
Depending on the particulars, the failure of either one 
of these conditions can lead to problems. 

The Differential Law of Gravity (DLOG) proposed 
in this work solves the gravity problem even when 
the two masses are not necessarily stationary, but are 
differentially small in size. Then, based on DLOG, 
the General Law of Gravity (GLOG) is formulated by 
integrating over all dm1 in m1 and all dm2 in m2. From 



A General Theory of Gravity with Applications to Determining the Mutually Attractive Forces between Moving Masses, the Center 
of Gravity, and the Resolution of the Dark Matter Problem

                                              Open Access Journal of Physics V6. I1. 20246

GLOG the cg of a given mass can be calculated, and 
it is shown that:
(a) The cg depends on the position of the observer.
(b) The cg is not necessarily at the cm.
These points are demonstrated in a simple barbell 
thought experiment. 
It is assumed in DLOG that each differential mass 
sends out a continuous gravitational ray (actually, the 
ray is spherical) which travels at the velocity of light 
in its instantaneous inertial frame of reference. When 
the ray from, say, dm1 arrives at the future position of 
dm2 , it exerts a force on dm2 which in part depends on 
the relative velocity VREL of dm2 in the direction of the 
movement of the ray.
In the case when m1 is the earth, it is shown that the 
gravitational force is given by f=mg. Thus, even 
though the center of gravity may not be known, the 
gravitational force can still be calculated.
By way of note, in Aucamp[1] a simplistic version 
of GLOG is assumed, and by extensive analysis it is 
concluded that the strange movements of stars can 

be explained, so it is quite probable there is no dark 
matter in the universe. As the analysis in that paper is 
too detailed to be summarized here, it is nevertheless 
argued that the theory is close enough to GLOG in 
certain respects that the derived conclusions are the 
same. Also, in Aucamp[2] the model in Aucamp[1] 
was used in a lesser role with other  theory to explain 
the appearance of dark energy in the universe.  

Since Einstein’s General Theory of Relativity resolves 
none of the problems resolved in this work, such as 
the gravitational forces that moving masses have on 
each other, the determination of the center of gravity 
and the resolution of the dark matter issue, it is argued 
that GLOG should replace Einstein’s theory.
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